Generalizability in nongaussian longitudinal clinical trial data based on generalized linear mixed models.
نویسندگان
چکیده
This work investigates how generalizability, an extension of reliability, can be defined and estimated based on longitudinal data sequences resulting from, for example, clinical studies. Useful and intuitive approximate expressions are derived based on generalized linear mixed models. Data from four double-blind, randomized clinical trials into schizophrenia motivate the research and are used to estimate generalizability for a binary response parameter.
منابع مشابه
Item response models for the longitudinal analysis of health-related quality of life in cancer clinical trials
BACKGROUND The use of health-related quality of life (HRQoL) as an endpoint in cancer clinical trials is growing rapidly. Hence, research into the statistical approaches used to analyze HRQoL data is of major importance, and could lead to a better understanding of the impact of treatments on the everyday life and care of patients. Amongst the models that are used for the longitudinal analysis o...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملShared parameter models for the joint analysis of longitudinal data and event times.
Longitudinal studies often gather joint information on time to some event (survival analysis, time to dropout) and serial outcome measures (repeated measures, growth curves). Depending on the purpose of the study, one may wish to estimate and compare serial trends over time while accounting for possibly non-ignorable dropout or one may wish to investigate any associations that may exist between...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biopharmaceutical statistics
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2008